
Mathematical Finance
Dylan Possamaï

Assignment 7—solutions

We fix throughout a probability space (Ω,F ,P) on which we are given a filtration F, unless otherwise stated.

A large financial market

We take here as a probability space Ω := [0, 1], F the Borel–σ-algebra on [0, 1], and as probability measure P the
Lebesgue measure on [0, 1]. We consider then a financial market with time-horizon 1, and with countably many risky
assets with (discounted) prices (Sn)n∈N which are given for any n ∈ N by

Snt := 0, t ∈ [0, 1), Sn1 (x) :=
{
−x−1/2, if x ∈ [0, εn),
(1− x)−

1
n+1 , if x ∈ [εn, 1],

where the sequence (εn)n∈N takes values in (0, 1), and converges to 0 as n goes to +∞. We take for F the natural
filtration generated by (Sn)n∈N.

1) Show that it is possible to choose the sequence (εn)n∈N such that EP[Sn1 ] = 1 for all n ∈ N.

We have for any n ∈ N

EP[Sn1 ] = −
∫ εn

0

dx√
x

+
∫ 1

εn

dx
(1− x)

1
n+1

= −2
√
εn + n+ 1

n
(1− εn)

n
n+1 ,

so that
EP[Sn1 ] = 1⇐⇒ 1 + 2

√
εn = n+ 1

n
(1− εn)

n
n+1 .

Define then for any n ∈ N the map fn : (0, 1) −→ R by

fn(x) := 1 + 2
√
x− n+ 1

n
(1− x)

n
n+1 .

We have
f ′n(x) = 1√

x
+ (1− x)−

1
n+1 , x ∈ (0, 1),

so that fn is increasing for any n ∈ N, with limx→0+ fn(x) = −1/n and limx→1− fn(x) = 3, meaning that
there is a unique solution εn ∈ (0, 1) to the equation fn(x) = 0. Moreover, as n goes to +∞, it is clear
that we must have that εn goes to 0, otherwise the equality

1 + 2
√
εn = n+ 1

n
(1− εn)

n
n+1 ,

could not be satisfied, since its right-hand side must go to 1 as n goes to +∞.

2) We now want to prove that P is a separating measure for this market. Show that it is enough for this to prove
that for any n ∈ N and any sequence (ck)k∈{0,...,n} such that

∑n
k=0 ckS

k
1 is bounded from below, we have

EP
[ n∑
k=0

ckS
k
1

]
≤ 0,

and deduce that P is indeed a separating measure.

In this market, the terminal wealth at time 1 of an admissible portfolio takes the form

X1 =
∑
n∈N

cnS
n
1 ,
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for some sequence (cn)n∈N such that X1 is bounded from below. Indeed, the asset prices are equal
to 0 before the terminal time 1, so admissible portfolio processes must have this form. We want
to prove that for any such X1, EP[X1] ≤ 0. By Fatou’s lemma (recall that the sums appearing are
bounded from below), it is enough to prove that for any n ∈ N

EP
[ n∑
k=0

ckS
k
1︸ ︷︷ ︸

=:Xn
1

]
≤ 0.

We have

EP[Xn
1 ] =

∑
{k∈{0,...,n}:ck>0}

ckEP[Sk1 ] +
∑

{k∈{0,...,n}:ck<0}

ckEP[Sk1 ] =
∑

{k∈{0,...,n}:ck>0}

ck −
∑

{k∈{0,...,n}:ck<0}

|ck|

and since, for x ∈ [0, εn], we have

Xn
1 (x) = − 1√

x

( ∑
{k∈{0,...,n}:ck>0}

ck −
∑

{k∈{0,...,n}:ck<0}

|ck|

)
= − 1√

x
EP[Xn

1 ],

the only way Xn
1 can remain bounded from below for any n ∈ N is if EP[Xn

1 ] ≤ 0.

3) Prove that there cannot exist an equivalent σ-martingale measure on this market, and comment.

If Q is an equivalent σ-martingale measure, then for any n ∈ N, Sn must be an (F,Q)–σ-martingale.
This means that there is a sequence (Dk)k∈N of F-predictable sets whose union is Ω× [0, 1] and such
that for any k ∈ N, the process Y k,n :=

∫ ·
0 1Dk

(s)dSns = 1{·=1}1Dk
(1)Sn1 , is a Q–uniformly integrable

(F,Q)-martingale. This implies in particular that EQ[1Dk
(1)Sn1 ] = 0, which is equivalent to∫ εn

0

1√
x

1Dk
(1, x)dQ(x) =

∫ 1

εn

1
(1− x)

1
n+1

1Dk
(1, x)dQ(x).

The term to the left-hand side must go to 0 as ε go to 0 since Q is equivalent to Lebesgue measure.
However, we have ∫ 1

εn

1
(1− x)

1
n+1

1Dk
(1, x)dQ(x) ≥

∫ 1

εn

1Dk
(1, x)dQ(x).

This would thus imply that
∫ 1

0 1Dk
(1, x)dQ(x) = 0, and thus letting k go to +∞ by dominated

convergence that Q[[0, 1]] = 0, which contradicts the fact that P and Q are equivalent.

This means that for markets with infinitely many assets, the existence of a separating measure no
longer implies the existence of a σ-martingale measure, and that the form of the first FTAP must
be modified. For more information, you can see for instance Cuchiero, Klein, and Teichmann [1].

On separating measures

Consider a financial market where discounted prices are given by S := (S1, . . . , Sdt )>t∈[0,T ] which is a d-dimensional
(F,P)–semi-martingale and let Q be a measure equivalent to P on FT

1) Assume that F0 is trivial and that Q is a separating measure for S. Show that if S is (F,P)–locally bounded,
then Q is an equivalent local martingale measure for S.

First, assume that S is bounded. Note that then every simple strategy is admissible. Moreover, S
is a Q–uniformly integrable (F,Q)-martingale if and only if EQ[Sτ − S0] = 0 for all F–stopping times
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τ taking values in [0, T ]. So let τ be such an arbitrary F–stopping time, and consider the simple
strategies ξ± := ±1]]0,τ ]]. Using that Q is an equivalent separating measure for S then gives

0 ≥ EQ
[ ∫ T

0
ξ±s dSs

]
= ±EQ[Sτ − S0]. (0.1)

If S is (F,P)–locally bounded, then there exists an increasing sequence of F–stopping times (σn)n∈N
taking values in [0, T ] with limn→∞ P[σn = T ] = 1 such that Sσn is bounded for all n ∈ N. It suffices to
show that for each n ∈ N, Sσn is a Q–uniformly integrable (F,Q)-martingale. To this end, fix n ∈ N.
It suffices to show that for each F–stopping time τ with τ ≤ σn, P–a.s., EQ[Sτ − S0] = 0. So let τ
be such an F–stopping time, and consider as above the simple strategies ξ± := ±1]]0,τ ]]. Then both
strategies are admissible since S is bounded on [[0, σn]] and τ ≤ σn P–a.s., and the same argument as
in the first step gives EQ[Sτ − S0] = 0.

2) Assume that Q is an equivalent (F,Q)–σ-martingale measure for S. Show that it is also an equivalent separating
measure.

By assumption, there exist a strictly positive predictable process ψ = (ψt)t∈[0,T ], an Rd-valued (F,Q)–
local martingaleM and a Rd-valued F0-measurable random vector S0 such that S = S0+

∫ ·
0 ψs·dMs. Let

ξ be an F-predictable process such that
∫ ·

0 ξs ·dSs is bounded from below. Then by the associativity
of the stochastic integral,

∫ ·
0 ξs ·dSs =

∫ ·
0 ξsψs ·dMs. Moreover, since

∫ ·
0 ξsψs ·dMs is uniformly bounded

from below by admissibility, it is an (F,Q)–local martingale by the Ansel–Stricker lemma. By
Fatou’s lemma, it is then also an (F,Q)–super-martingale, and hence

EQ
[ ∫ T

0
ξs · dSs

]
≤ 0. (0.2)

3) Now assume that d = 1, that (Ft)t∈[0,T ] is the natural (P-completed) filtration of S and that the process S =
(St)t∈[0,T ] is of the form

St =
{

0, if 0 ≤ t < T,

X, if t = T,

where X is normally distributed with mean µ 6= 0 and variance σ2 > 0 under P. Show that in this case, the class
Msep(S,F,P) of equivalent separating measures for S is strictly bigger thanMσ(S,F,P).

Let ξ ∈ L1(S,F,P) be arbitrary. Then∫ T

0
ξs · dSs = lim

t↑T

∫ t

0
ξs · dSs + ξTX = ξTX. (0.3)

Since ξ is F-predictable where F is the natural filtration of S, ξT is FT−-measurable, and therefore
deterministic. Since X has unbounded support,

∫ T
0 ξs · dSs is bounded from below if and only if

ξT = 0. Thus, we may conclude that
∫ T

0 ξs · dSs = 0 for all admissible ξ.

Therefore the condition
EQ
[ ∫ T

0
ξs · dSs

]
≤ 0, for all admissible ξ,

is trivially satisfied for each probability measure Q equivalent to P on FT . In particular, P itself is
a separating measure for S.

Finally if Q is an equivalent probability measure, by 1) (whose results remain unchanged by an
equivalent change of measure), M = (Mt)t∈[0,T ] is a Q-martingale null at 0 for the filtration (Ft)t∈[0,T ]

3



if and only ifMT is σ(X)-measurable, Q-integrable with mean 0 andMt = 0 for all t ∈ [0, T ). Moreover,
if ψ ∈ L1(M,F,Q), then as M is constant and equal to 0 on [0, T )∫ t

0
ψs · dMs =

{
0, for t < T,

ψTMT , for t = T.
(0.4)

Note that as ψT is constant,
∫ ·

0 ψs · dMs is a true (F,Q)-martingale, and thus Q is an equivalent σ-
martingale measure for S if and only if it is an equivalent martingale measure. Since EP[ST ] = µ 6= 0,
P is not a martingale measure and hence also not a σ-martingale measure.

Stop–loss start–gain strategy

Let the financial market on (Ω,F ,F = (Ft)t∈[0,T ],P), T < ∞, be described by a reference asset S0 = 1 and one risky
asset S being a geometric Brownian motion, i.e.

dSt = St
(
µdt+ σdWt

)
, S0 = s0 > 0, (0.5)

for some given constants µ ∈ R, σ > 0.

Fix K > 0. We start with one share if S0 > K and with no share if S0 ≤ K. Whenever the stock price falls below K
(or equals K), the share is sold, and whenever the price returns to a level strictly above K, one share is bought again.
Thus, the amount held in the reference asset is given by δt = −K1{St>K}, t ∈ [0, T ], and the amount held in the risky
asset is given by ∆t = 1{St>K}, t ∈ [0, T ].

1) Verify that the geometric Brownian motion S satisfying (0.5) has the expression

St = s0 exp
(
σWt + (µ− σ2/2)t

)
, t ∈ [0, T ].

Apply Itô’s formula to St = s0 exp (σWt + (µ− 1
2σ

2)t) to see that S satisfies the desired dynamics.
Uniqueness is standard.

2) Show that for each t ∈ (0, T ], it holds that

P[St > K] > 0, and P[St < K] > 0.

Note that {St > K} =
{
Wt >

1
σ (log(K/s0) − (µ − 1

2σ
2)t)

}
. Since under the measure P, the random

variable Wt has a normal distribution, we get

P[St > K] = P
[
Wt >

1
σ

(log(K/s0)− (µ− σ2/2)t)
]
> 0.

Similarly we have P[St < K] > 0.

3) Let LK(S) be the local time of S at K defined as in the lecture notes. Show that P[LKt (S) > 0] > 0 holds for all
t ∈ (0, T ].

Hint: Recall that by Girsanov’s theorem, there exists a measure Q which is equivalent to P on FT and such that
(St)t∈[0,T ] is an (F,Q)–martingale. You can take the Q-expectation of (St−K)+ and apply Jensen’s inequality to
get the desired result. Tanaka’s formula will be very helpful. You may also use the fact that if S is a continuous
martingale and H is a bounded F-predictable process, then the stochastic integral

∫ ·
0 HdS is also a continuous

martingale.

Let Q be an equivalent measure on FT for S such that S is an (F,Q)-martingale. By Tanaka’s
formula

(St −K)+ = (S0 −K)+ +
∫ t

0
1{Ss>K}dSs + 1

2L
K
t (S), t ∈ [0, T ],
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and also note that with S being an (F,Q)-martingale, the stochastic integral
∫ ·

0 1{Ss>K}dSs is also an
(F,Q)-martingale. Hence, taking the Q-expectation of both sides of the equation above, we get for
any t ∈ [0, T ]

EQ[(St −K)+]− EQ[(S0 −K)+] = 1
2E

Q[LKt (S)].

Since Q is equivalent to P, we can derive from 2) that Q[St > K] > 0 and Q[St < K] > 0. Consequently,
since the function g(x) := (x−K)+ is strictly convex on any interval containing K, Jensen’s inequality
applied for EQ[g(St)] is strict and therefore for any t ∈ [0, T ]

1
2E

Q[LKt (S)] = EQ[g(St)]− EQ[g(S0)] > g
(
EQ[St]

)
− g(s0) = g(s0)− g(s0) = 0.

It follows that for any t ∈ [0, T ], Q[LKt (S) > 0] > 0 and of course also P[LKt (S) > 0] > 0.

4) Conclude that the so-called stop–loss start–gain strategy (δ,∆) defined above is not a self-financing strategy.

We first observe that the portfolio value at time t > 0 is given for any t ∈ [0, T ] by

Xδ,∆
t = δt + ∆tSt = −K1{St>K} + 1{St>K}St = max(0, St −K) = (St −K)+.

By definition, (δ0,∆) is self-financing if and only if for any t > 0

Xδ,∆
t = Xδ,∆

0 +
∫ t

0
∆sdSs. (0.6)

Now by Tanaka’s formula and noting that Xδ,∆
0 = (S0 −K)+, we have

Xδ,∆
t = (St −K)+ = (S0 −K)+ +

∫ t

0
1{Ss>K}dSs + 1

2L
K
t (S). (0.7)

Thus, we see from the comparison of (0.6) with (0.7) that (δ,∆) is self-financing if and only if for any
t > 0, LKt (S) is equal to zero P–a.s. But we know from 3) that LKt (S) ≥ 0, P–a.s. and P[LKt (S) > 0] > 0,
and hence (δ,∆) is not self-financing.
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