Mathematical Finance Dylan Possamaï

Assignment 7—solutions

We fix throughout a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ on which we are given a filtration \mathbb{F} , unless otherwise stated.

A large financial market

We take here as a probability space $\Omega := [0, 1]$, \mathcal{F} the Borel- σ -algebra on [0, 1], and as probability measure \mathbb{P} the Lebesgue measure on [0, 1]. We consider then a financial market with time-horizon 1, and with countably many risky assets with (discounted) prices $(S^n)_{n \in \mathbb{N}}$ which are given for any $n \in \mathbb{N}$ by

$$S_t^n := 0, \ t \in [0,1), \ S_1^n(x) := \begin{cases} -x^{-1/2}, \ \text{if } x \in [0,\varepsilon_n), \\ (1-x)^{-\frac{1}{n+1}}, \ \text{if } x \in [\varepsilon_n,1], \end{cases}$$

where the sequence $(\varepsilon_n)_{n\in\mathbb{N}}$ takes values in (0,1), and converges to 0 as n goes to $+\infty$. We take for \mathbb{F} the natural filtration generated by $(S^n)_{n\in\mathbb{N}}$.

1) Show that it is possible to choose the sequence $(\varepsilon_n)_{n\in\mathbb{N}}$ such that $\mathbb{E}^{\mathbb{P}}[S_1^n] = 1$ for all $n \in \mathbb{N}$.

We have for any $n \in \mathbb{N}$

$$\mathbb{E}^{\mathbb{P}}[S_1^n] = -\int_0^{\varepsilon_n} \frac{\mathrm{d}x}{\sqrt{x}} + \int_{\varepsilon_n}^1 \frac{\mathrm{d}x}{(1-x)^{\frac{1}{n+1}}} = -2\sqrt{\varepsilon_n} + \frac{n+1}{n}(1-\varepsilon_n)^{\frac{n}{n+1}},$$

so that

$$\mathbb{E}^{\mathbb{P}}[S_1^n] = 1 \iff 1 + 2\sqrt{\varepsilon_n} = \frac{n+1}{n}(1-\varepsilon_n)^{\frac{n}{n+1}}.$$

Define then for any $n \in \mathbb{N}$ the map $f_n : (0,1) \longrightarrow \mathbb{R}$ by

$$f_n(x) := 1 + 2\sqrt{x} - \frac{n+1}{n}(1-x)^{\frac{n}{n+1}}.$$

We have

$$f'_n(x) = \frac{1}{\sqrt{x}} + (1-x)^{-\frac{1}{n+1}}, x \in (0,1),$$

so that f_n is increasing for any $n \in \mathbb{N}$, with $\lim_{x\to 0+} f_n(x) = -1/n$ and $\lim_{x\to 1-} f_n(x) = 3$, meaning that there is a unique solution $\varepsilon_n \in (0,1)$ to the equation $f_n(x) = 0$. Moreover, as n goes to $+\infty$, it is clear that we must have that ε_n goes to 0, otherwise the equality

$$1 + 2\sqrt{\varepsilon_n} = \frac{n+1}{n}(1-\varepsilon_n)^{\frac{n}{n+1}},$$

could not be satisfied, since its right-hand side must go to 1 as n goes to $+\infty$.

2) We now want to prove that \mathbb{P} is a separating measure for this market. Show that it is enough for this to prove that for any $n \in \mathbb{N}$ and any sequence $(c_k)_{k \in \{0,...,n\}}$ such that $\sum_{k=0}^{n} c_k S_1^k$ is bounded from below, we have

$$\mathbb{E}^{\mathbb{P}}\bigg[\sum_{k=0}^{n} c_k S_1^k\bigg] \le 0,$$

and deduce that \mathbb{P} is indeed a separating measure.

In this market, the terminal wealth at time 1 of an admissible portfolio takes the form

$$X_1 = \sum_{n \in \mathbb{N}} c_n S_1^n,$$

for some sequence $(c_n)_{n \in \mathbb{N}}$ such that X_1 is bounded from below. Indeed, the asset prices are equal to 0 before the terminal time 1, so admissible portfolio processes must have this form. We want to prove that for any such X_1 , $\mathbb{E}^{\mathbb{P}}[X_1] \leq 0$. By Fatou's lemma (recall that the sums appearing are bounded from below), it is enough to prove that for any $n \in \mathbb{N}$

$$\mathbb{E}^{\mathbb{P}}\bigg[\sum_{\substack{k=0\\ =:X_1^n}}^n c_k S_1^k\bigg] \le 0.$$

We have

$$\mathbb{E}^{\mathbb{P}}[X_1^n] = \sum_{\{k \in \{0, \dots, n\}: c_k > 0\}} c_k \mathbb{E}^{\mathbb{P}}[S_1^k] + \sum_{\{k \in \{0, \dots, n\}: c_k < 0\}} c_k \mathbb{E}^{\mathbb{P}}[S_1^k] = \sum_{\{k \in \{0, \dots, n\}: c_k > 0\}} c_k - \sum_{\{k \in \{0, \dots, n\}: c_k < 0\}} |c_k|$$

and since, for $x \in [0, \varepsilon_n]$, we have

$$X_1^n(x) = -\frac{1}{\sqrt{x}} \left(\sum_{\{k \in \{0,\dots,n\}: c_k > 0\}} c_k - \sum_{\{k \in \{0,\dots,n\}: c_k < 0\}} |c_k| \right) = -\frac{1}{\sqrt{x}} \mathbb{E}^{\mathbb{P}}[X_1^n],$$

the only way X_1^n can remain bounded from below for any $n \in \mathbb{N}$ is if $\mathbb{E}^{\mathbb{P}}[X_1^n] \leq 0$.

3) Prove that there cannot exist an equivalent σ -martingale measure on this market, and comment.

If \mathbb{Q} is an equivalent σ -martingale measure, then for any $n \in \mathbb{N}$, S^n must be an $(\mathbb{F}, \mathbb{Q})-\sigma$ -martingale. This means that there is a sequence $(D_k)_{k\in\mathbb{N}}$ of \mathbb{F} -predictable sets whose union is $\Omega \times [0,1]$ and such that for any $k \in \mathbb{N}$, the process $Y^{k,n} := \int_0^{\infty} \mathbf{1}_{D_k}(s) \mathrm{d}S_s^n = \mathbf{1}_{\{\cdot=1\}} \mathbf{1}_{D_k}(1)S_1^n$, is a \mathbb{Q} -uniformly integrable (\mathbb{F}, \mathbb{Q}) -martingale. This implies in particular that $\mathbb{E}^{\mathbb{Q}}[\mathbf{1}_{D_k}(1)S_1^n] = 0$, which is equivalent to

$$\int_{0}^{\varepsilon_{n}} \frac{1}{\sqrt{x}} \mathbf{1}_{D_{k}}(1, x) \mathrm{d}\mathbb{Q}(x) = \int_{\varepsilon_{n}}^{1} \frac{1}{(1-x)^{\frac{1}{n+1}}} \mathbf{1}_{D_{k}}(1, x) \mathrm{d}\mathbb{Q}(x).$$

The term to the left-hand side must go to 0 as ε go to 0 since \mathbb{Q} is equivalent to Lebesgue measure. However, we have

$$\int_{\varepsilon_n}^1 \frac{1}{(1-x)^{\frac{1}{n+1}}} \mathbf{1}_{D_k}(1,x) \mathrm{d}\mathbb{Q}(x) \ge \int_{\varepsilon_n}^1 \mathbf{1}_{D_k}(1,x) \mathrm{d}\mathbb{Q}(x)$$

This would thus imply that $\int_0^1 \mathbf{1}_{D_k}(1, x) d\mathbb{Q}(x) = 0$, and thus letting k go to $+\infty$ by dominated convergence that $\mathbb{Q}[[0, 1]] = 0$, which contradicts the fact that \mathbb{P} and \mathbb{Q} are equivalent.

This means that for markets with infinitely many assets, the existence of a separating measure no longer implies the existence of a σ -martingale measure, and that the form of the first FTAP must be modified. For more information, you can see for instance Cuchiero, Klein, and Teichmann [1].

On separating measures

Consider a financial market where discounted prices are given by $S := (S^1, \ldots, S^d_t)_{t \in [0,T]}^\top$ which is a *d*-dimensional (\mathbb{F}, \mathbb{P}) -semi-martingale and let \mathbb{Q} be a measure equivalent to \mathbb{P} on \mathcal{F}_T

1) Assume that \mathcal{F}_0 is trivial and that \mathbb{Q} is a separating measure for S. Show that if S is (\mathbb{F}, \mathbb{P}) -locally bounded, then \mathbb{Q} is an equivalent local martingale measure for S.

First, assume that S is bounded. Note that then every simple strategy is admissible. Moreover, S is a \mathbb{Q} -uniformly integrable (\mathbb{F}, \mathbb{Q})-martingale if and only if $\mathbb{E}^{\mathbb{Q}}[S_{\tau} - S_0] = 0$ for all \mathbb{F} -stopping times

 τ taking values in [0,T]. So let τ be such an arbitrary \mathbb{F} -stopping time, and consider the simple strategies $\xi^{\pm} := \pm \mathbf{1}_{[0,\tau]}$. Using that \mathbb{Q} is an equivalent separating measure for S then gives

$$0 \ge \mathbb{E}^{\mathbb{Q}}\left[\int_{0}^{T} \xi_{s}^{\pm} \mathrm{dS}_{s}\right] = \pm \mathbb{E}^{\mathbb{Q}}[S_{\tau} - S_{0}].$$

$$(0.1)$$

If S is (\mathbb{F}, \mathbb{P}) -locally bounded, then there exists an increasing sequence of \mathbb{F} -stopping times $(\sigma_n)_{n \in \mathbb{N}}$ taking values in [0,T] with $\lim_{n\to\infty} \mathbb{P}[\sigma_n = T] = 1$ such that S^{σ_n} is bounded for all $n \in \mathbb{N}$. It suffices to show that for each $n \in \mathbb{N}$, S^{σ_n} is a Q-uniformly integrable (\mathbb{F}, \mathbb{Q}) -martingale. To this end, fix $n \in \mathbb{N}$. It suffices to show that for each \mathbb{F} -stopping time τ with $\tau \leq \sigma_n$, \mathbb{P} -a.s., $\mathbb{E}^{\mathbb{Q}}[S_{\tau} - S_0] = 0$. So let τ be such an \mathbb{F} -stopping time, and consider as above the simple strategies $\xi^{\pm} := \pm \mathbf{1}_{[0,\tau]}$. Then both strategies are admissible since S is bounded on $[\![0,\sigma_n]\!]$ and $\tau \leq \sigma_n \mathbb{P}$ -a.s., and the same argument as in the first step gives $\mathbb{E}^{\mathbb{Q}}[S_{\tau} - S_0] = 0$.

2) Assume that \mathbb{Q} is an equivalent $(\mathbb{F}, \mathbb{Q}) - \sigma$ -martingale measure for S. Show that it is also an equivalent separating measure.

By assumption, there exist a strictly positive predictable process $\psi = (\psi_t)_{t \in [0,T]}$, an \mathbb{R}^d -valued (\mathbb{F}, \mathbb{Q}) local martingale M and a \mathbb{R}^d -valued \mathcal{F}_0 -measurable random vector S_0 such that $S = S_0 + \int_0^{\cdot} \psi_s \cdot dM_s$. Let ξ be an \mathbb{F} -predictable process such that $\int_0^{\cdot} \xi_s \cdot dS_s$ is bounded from below. Then by the associativity of the stochastic integral, $\int_0^{\cdot} \xi_s \cdot dS_s = \int_0^{\cdot} \xi_s \psi_s \cdot dM_s$. Moreover, since $\int_0^{\cdot} \xi_s \psi_s \cdot dM_s$ is uniformly bounded from below by admissibility, it is an (\mathbb{F}, \mathbb{Q}) -local martingale by the Ansel-Stricker lemma. By Fatou's lemma, it is then also an (\mathbb{F}, \mathbb{Q}) -super-martingale, and hence

$$\mathbb{E}^{\mathbb{Q}}\left[\int_{0}^{T} \xi_{s} \cdot \mathrm{d}S_{s}\right] \leq 0.$$

$$(0.2)$$

3) Now assume that d = 1, that $(\mathcal{F}_t)_{t \in [0,T]}$ is the natural (\mathbb{P} -completed) filtration of S and that the process $S = (S_t)_{t \in [0,T]}$ is of the form

$$S_t = \begin{cases} 0, \text{ if } 0 \le t < T \\ X, \text{ if } t = T, \end{cases}$$

where X is normally distributed with mean $\mu \neq 0$ and variance $\sigma^2 > 0$ under \mathbb{P} . Show that in this case, the class $\mathcal{M}_{sep}(S, \mathbb{F}, \mathbb{P})$ of equivalent separating measures for S is strictly bigger than $\mathcal{M}_{\sigma}(S, \mathbb{F}, \mathbb{P})$.

Let $\xi \in \mathcal{L}^1(S, \mathbb{F}, \mathbb{P})$ be arbitrary. Then

$$\int_0^T \xi_s \cdot \mathrm{d}S_s = \lim_{t \uparrow T} \int_0^t \xi_s \cdot \mathrm{d}S_s + \xi_T X = \xi_T X. \tag{0.3}$$

Since ξ is \mathbb{F} -predictable where \mathbb{F} is the natural filtration of S, ξ_T is \mathcal{F}_{T-} -measurable, and therefore deterministic. Since X has unbounded support, $\int_0^T \xi_s \cdot dS_s$ is bounded from below if and only if $\xi_T = 0$. Thus, we may conclude that $\int_0^T \xi_s \cdot dS_s = 0$ for all admissible ξ .

Therefore the condition

$$\mathbb{E}^{\mathbb{Q}}\bigg[\int_{0}^{T}\xi_{s}\cdot\mathrm{d}S_{s}\bigg]\leq0,\text{ for all admissible }\xi,$$

is trivially satisfied for each probability measure \mathbb{Q} equivalent to \mathbb{P} on \mathcal{F}_T . In particular, \mathbb{P} itself is a separating measure for S.

Finally if \mathbb{Q} is an equivalent probability measure, by 1) (whose results remain unchanged by an equivalent change of measure), $M = (M_t)_{t \in [0,T]}$ is a \mathbb{Q} -martingale null at 0 for the filtration $(\mathcal{F}_t)_{t \in [0,T]}$

if and only if M_T is $\sigma(X)$ -measurable, \mathbb{Q} -integrable with mean 0 and $M_t = 0$ for all $t \in [0, T)$. Moreover, if $\psi \in \mathcal{L}^1(M, \mathbb{F}, \mathbb{Q})$, then as M is constant and equal to 0 on [0, T)

$$\int_0^t \psi_s \cdot \mathrm{d}M_s = \begin{cases} 0, \text{ for } t < T, \\ \psi_T M_T, \text{ for } t = T. \end{cases}$$
(0.4)

Note that as ψ_T is constant, $\int_0^{\cdot} \psi_s \cdot dM_s$ is a true (\mathbb{F}, \mathbb{Q}) -martingale, and thus \mathbb{Q} is an equivalent σ martingale measure for S if and only if it is an equivalent martingale measure. Since $\mathbb{E}^{\mathbb{P}}[S_T] = \mu \neq 0$, \mathbb{P} is not a martingale measure and hence also not a σ -martingale measure.

Stop-loss start-gain strategy

Let the financial market on $(\Omega, \mathcal{F}, \mathbb{F} = (\mathcal{F}_t)_{t \in [0,T]}, \mathbb{P}), T < \infty$, be described by a reference asset $S^0 = 1$ and one risky asset S being a geometric Brownian motion, i.e.

$$dS_t = S_t (\mu dt + \sigma dW_t), \ S_0 = s_0 > 0, \tag{0.5}$$

for some given constants $\mu \in \mathbb{R}, \sigma > 0$.

Fix K > 0. We start with one share if $S_0 > K$ and with no share if $S_0 \le K$. Whenever the stock price falls below K (or equals K), the share is sold, and whenever the price returns to a level strictly above K, one share is bought again. Thus, the amount held in the reference asset is given by $\delta_t = -K\mathbf{1}_{\{S_t > K\}}, t \in [0, T]$, and the amount held in the risky asset is given by $\Delta_t = \mathbf{1}_{\{S_t > K\}}, t \in [0, T]$.

1) Verify that the geometric Brownian motion S satisfying (0.5) has the expression

$$S_t = s_0 \exp(\sigma W_t + (\mu - \sigma^2/2)t), \ t \in [0, T].$$

Apply Itô's formula to $S_t = s_0 \exp(\sigma W_t + (\mu - \frac{1}{2}\sigma^2)t)$ to see that S satisfies the desired dynamics. Uniqueness is standard.

2) Show that for each $t \in (0, T]$, it holds that

$$\mathbb{P}[S_t > K] > 0$$
, and $\mathbb{P}[S_t < K] > 0$.

Note that $\{S_t > K\} = \{W_t > \frac{1}{\sigma} (\log(K/s_0) - (\mu - \frac{1}{2}\sigma^2)t)\}$. Since under the measure \mathbb{P} , the random variable W_t has a normal distribution, we get

$$\mathbb{P}[S_t > K] = \mathbb{P}\left[W_t > \frac{1}{\sigma} (\log(K/s_0) - (\mu - \sigma^2/2)t)\right] > 0.$$

Similarly we have $\mathbb{P}[S_t < K] > 0$.

3) Let $L^{K}(S)$ be the local time of S at K defined as in the lecture notes. Show that $\mathbb{P}[L_{t}^{K}(S) > 0] > 0$ holds for all $t \in (0, T]$.

Hint: Recall that by Girsanov's theorem, there exists a measure \mathbb{Q} which is equivalent to \mathbb{P} on \mathcal{F}_T and such that $(S_t)_{t \in [0,T]}$ is an (\mathbb{F}, \mathbb{Q}) -martingale. You can take the \mathbb{Q} -expectation of $(S_t - K)^+$ and apply Jensen's inequality to get the desired result. Tanaka's formula will be very helpful. You may also use the fact that if S is a continuous martingale and H is a bounded \mathbb{F} -predictable process, then the stochastic integral $\int_0^{\cdot} H dS$ is also a continuous martingale.

Let \mathbb{Q} be an equivalent measure on \mathcal{F}_T for S such that S is an (\mathbb{F}, \mathbb{Q}) -martingale. By Tanaka's formula

$$(S_t - K)^+ = (S_0 - K)^+ + \int_0^t \mathbf{1}_{\{S_s > K\}} dS_s + \frac{1}{2} L_t^K(S), \ t \in [0, T],$$

and also note that with S being an (\mathbb{F}, \mathbb{Q}) -martingale, the stochastic integral $\int_0^{\cdot} \mathbf{1}_{\{S_s > K\}} dS_s$ is also an (\mathbb{F}, \mathbb{Q}) -martingale. Hence, taking the \mathbb{Q} -expectation of both sides of the equation above, we get for any $t \in [0, T]$

$$\mathbb{E}^{\mathbb{Q}}[(S_t - K)^+] - \mathbb{E}^{\mathbb{Q}}[(S_0 - K)^+] = \frac{1}{2}\mathbb{E}^{\mathbb{Q}}[L_t^K(S)].$$

Since \mathbb{Q} is equivalent to \mathbb{P} , we can derive from 2) that $\mathbb{Q}[S_t > K] > 0$ and $\mathbb{Q}[S_t < K] > 0$. Consequently, since the function $g(x) := (x-K)^+$ is strictly convex on any interval containing K, Jensen's inequality applied for $\mathbb{E}^{\mathbb{Q}}[g(S_t)]$ is strict and therefore for any $t \in [0,T]$

$$\frac{1}{2}\mathbb{E}^{\mathbb{Q}}[L_t^K(S)] = \mathbb{E}^{\mathbb{Q}}[g(S_t)] - \mathbb{E}^{\mathbb{Q}}[g(S_0)] > g(\mathbb{E}^{\mathbb{Q}}[S_t]) - g(s_0) = g(s_0) - g(s_0) = 0.$$

It follows that for any $t \in [0,T]$, $\mathbb{Q}[L_t^K(S) > 0] > 0$ and of course also $\mathbb{P}[L_t^K(S) > 0] > 0$.

4) Conclude that the so-called stop-loss start-gain strategy (δ, Δ) defined above is not a self-financing strategy.

We first observe that the portfolio value at time t > 0 is given for any $t \in [0,T]$ by

$$X_t^{\delta,\Delta} = \delta_t + \Delta_t S_t = -K \mathbf{1}_{\{S_t > K\}} + \mathbf{1}_{\{S_t > K\}} S_t = \max(0, S_t - K) = (S_t - K)^+.$$

By definition, (δ^0, Δ) is self-financing if and only if for any t > 0

$$X_t^{\delta,\Delta} = X_0^{\delta,\Delta} + \int_0^t \Delta_s \mathrm{d}S_s. \tag{0.6}$$

Now by Tanaka's formula and noting that $X_0^{\delta,\Delta} = (S_0 - K)^+$, we have

$$X_t^{\delta,\Delta} = (S_t - K)^+ = (S_0 - K)^+ + \int_0^t \mathbf{1}_{\{S_s > K\}} \mathrm{d}S_s + \frac{1}{2} L_t^K(S).$$
(0.7)

Thus, we see from the comparison of (0.6) with (0.7) that (δ, Δ) is self-financing if and only if for any t > 0, $L_t^K(S)$ is equal to zero \mathbb{P} -a.s. But we know from 3) that $L_t^K(S) \ge 0$, \mathbb{P} -a.s. and $\mathbb{P}[L_t^K(S) > 0] > 0$, and hence (δ, Δ) is not self-financing.

References

 C. Cuchiero, I. Klein, and J. Teichmann. A new perspective on the fundamental theorem of asset pricing for large financial markets. Theory of Probability & Its Applications, 60(4):561–579, 2016.